RAMAKRISHNA MISSION VIDYAMANDIRA (Residential Autonomous College affiliated to University of Calcutta) B.A./B.Sc. THIRD SEMESTER EXAMINATION, MARCH 2022

SECOND YEAR [BATCH 2020-23]

Date : $09/03/2022$	MATHEMATICS (General)	
Time : 11am-1pm	Paper : MAGT 1	Full Marks : 50

Group A

Answer **any three** questions of the following:

- 1. If the equation $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ represents two parallel straight lines, then show that the distance between them is $2\sqrt{\frac{g^2-ac}{a(a+b)}}$. [6]
- 2. Find the points of contact and equations of tangents to the conic $x^2 + y^2 + 6x 10y 15 = 0$ which are parallel to x- axis. [6]
- 3. Find the equation of $y^2 = 8x$ in the polar form with the vertex as the pole and the positive direction of the x- axis as the positive direction of the initial line. [6]
- 4. Show that the length of the focal chord of the conic $\frac{l}{r} = 1 e \cos \theta$ which is inclined to the initial line at an angle α is $\frac{2l}{1 e^2 \cos^2 \alpha}$. [6]
- 5. Find the equation of a right circular cone which passes through the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$ and whose axis is $\frac{x}{1} = \frac{y}{-2} = \frac{z}{2}$. [6]

Group B

Answer **any four** questions of the following:

- 6. (a) Prove that if n is an integer and θ is a real number, $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta.$
 - (b) Find the cube roots of -1 i.
- 7. (a) Find the principal value of $(1-i)^i$.
 - (b) Prove that if f(x) is a polynomial with real coefficients and $\alpha + i\beta$, $(\beta \neq 0)$ be a root of f(x) = 0, then $\alpha i\beta$ will be another root of f(x) = 0. [5]
- 8. (a) Solve the equation $x^4 + 6x^3 + 13x^2 + 12x 5 = 0$. Given that the sum of the two roots is equal to the sum of the other two. [4]
 - (b) If α, β, γ be the roots of the equation $2x^3 9x^2 + 7x + 6 = 0$, find the equation whose roots are $\alpha^2 + \beta^2 \gamma^2, \beta^2 + \gamma^2 \alpha^2, \gamma^2 + \alpha^2 \beta^2$. [4]
- 9. (a) Check whether the following set of vectors is linearly dependent or not. If yes, then express one of the vectors as linear combination of others. (1,0,0,1), (1,1,1,0), (0,1,1,1), (1,1,1,1). [5]

(b) State Cayley-Hamilton theorem. Use it find A^{-1} , where $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. [3]

10. (a) Find the eigen values and corresponding eigen vectors of the matrix $B = \begin{pmatrix} 1 & 3 \\ 4 & 5 \end{pmatrix}$. [5]

(b) Let (G, \circ) be a cyclic group, generated by a. Prove that a^{-1} is also a generator. [3]

 $[3 \times 6 = 18]$

[3]

 $\left[5\right]$

 $[4 \times 8 = 32]$

[3]

- 11. (a) Let (G, \circ) be a group and H be a non empty subset of G. Prove that (H, \circ) forms a subgroup of (G, \circ) if and only if $a \in H, b \in H \Longrightarrow a \circ b^{-1} \in H$. [5]
 - (b) Define divisors of zero in a ring. Give an example of a finite ring with divisors of zero.

[2+1]

_ _ _ _ × _ _ _ _ _